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J. Phys. A: Math. Gen. 22 (1989) 2879-2896. Printed in the U K  

Branching rules for typical and atypical representations 

M D Gouldt, A J Bracken? and J W B Hughes$ 
+ Department of Mathematics, University of Queensland, St. Lucia, Queensland 4067, 
Australia 
$ School of Mathematical Sciences, Queen Mary College, Mile End Road, London El 4NS, 
UK 

Abstract. The gl(nl l )Jgl(n)@gl(  1) branching rules are determined for all finite- 
dimensional irreducible typical and atypical representations of gl(n1 l ) ,  using a recently 
introduced induced module construction for atypical modules, and confirm those found 
recently by Palev by another method. The lowest weights and characters of the irreducible 
representations are found, and the validity for gl(nj1) of the character formula conjectured 
by Hughes and King is confirmed. Some generalisations and extensions of the method are 
discussed. 

1. Introduction 

Lie superalgebras and their representations play an important role in the understanding 
and exploitation of supersymmetry in physical systems. This was first recognised in 
the area of elementary particle physics (Wess and Zumino 1974) but more recent work, 
particularly in nuclear physics (Iachello 1980) and condensed matter physics (Parisi 
and Sourlas 1979, Nambu 1985, Montorsi et al 1987), demonstrates the importance 
of supersymmetry and Lie superalgebras in a variety of other areas. A comprehensive 
review of the subject is given in Kostelecky and Campbell (1985). 

Those Lie superalgebras whose theory and classification follow most closely that 
of the simple finite-dimensional Lie algebras are the basic classical superalgebras, 
whose properties were first developed in the definitive work of Kac (1977,1978). While 
these simple Lie superalgebras have many properties in common with simple Lie 
algebras, there are important differences and many aspects of their representation 
theory remain unexplored. An important development in this respect, due to Kac 
( 1978), was the characterisation of finite-dimensional irreducible representations into 
typical and atypical types. This characterisation is useful since typical representations 
have many properties in common with finite-dimensional representations of simple 
Lie algebras, and in particular are given explicitly by an induced module construction 
which allows a straightforward determination of their characters and dimensions (Kac 
1978). The situation with atypical representations, however, is far more complex and 
they are still far from well understood, although progress has been made with the 
introduction of supertableau methods (Dondi and Jarvis 1981, Farmer and Jarvis 1983, 
1984, Balantekin and Bars 1981, 1982, King 1983, Hurni 1987) and methods based on 
shift operators and weight space techniques (Hughes 1981, Van der Jeugt 1984, 1987, 
Hurni and Morel 1982, 1983). 

In this paper we are concerned with the structure of finite-dimensional irreducible 
representations of the Lie superalgebra gl(nll), n > 1, which for our purposes is easier 
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to work with than the basic classical superalgebra sl(nl1). This problem has been 
considered recently by Palev (1987, 1988a, b), who has found the matrix elements of 
the generators in an orthogonal Gel’fand-Tsetlin basis, for each finite-dimensional 
irreducible representation of gl( nil). We mention also earlier discussions of su( nil)  
by Ne’eman and Sternberg (1980), Thierry-Mieg and Morel (1981), Sun and Han 
(1981), Thierry-Mieg (1984) and Delduc and Gourdin (1984). Our approach to the 
determination of the branching rules is more direct, making use of the modified induced 
module construction recently introduced by one of us (Gould 1989a1, and avoiding 
the need to factor out Kac modules by their unique maximal submodules, in the case 
of atypical representations. We also avoid the need to introduce a particular basis and 
the calculation of matrix elements. On the other hand, our approach does not provide 
us with the extra information implicit in a complete determination of matrix elements. 
It would certainly be possible to extend our approach to the determination of matrix 
elements, following the introduction of a Gel’fand-Tsetlin basis, but we have not 
pursued that in view of Palev’s results. It is hoped that our approach can be extended 
to solve the gl( m l n )  Jgl(  m)Ogl(  n )  branching problem in particular, since the modified 
induced module construction is applicable to all type-I superalgebras (in Kac’s (1978) 
notation). An approach to this problem through a direct determination of matrix 
elements may well be impracticable. 

In what follows the gl(nll)&gl( n)Ogl(  1) branching rules are obtained for all 
irreducible typical and atypical representations. The method makes use of the g1( n )  
tensor operator shift-component formalism, first introduced by Green ( 197 l ) ,  which 
is shown to play a natural role in the representation theory of atypical as well as typical 
modules. The branching rule obtained implicitly contains all information on the 
weight-space structure of typical and atypical modules: in particular we are able to 
determine the minimal weights of all irreducible representations. We are also able to 
calculate the character of an arbitrary finite-dimensional irreducible representation of 
gl(nll), and thereby to confirm the validity for gl(nl1) of the character formula 
conjectured by Hughes and King (1987), as distinct from that obtained by Bernstein 
and Leites (1980) and Van der Jeugt (1987). The identification of the correct character 
formula has remained uncertain since Bernstein and Leites originally claimed, 
erroneously, that their formula is valid for all irreducible representations of gl( mln)  
(Hughes and King 1987, Leites 1987). I t  remains possible that the Bernstein-Leites-Van 
der Jeugt formula is indeed valid for gl(nll), in which case it must be equivalent for 
gl(nl1) to the Hughes-King formula, but a proof of such equivalence is not available. 

Further applications and possible extensions of our methods are discussed in the 
final section of the paper. 

2. Preliminaries 

The generators of the Lie superalgebra g l ( n / l )  are given by the even gl(n)Ogl( l )  
generators a:( 1 S i, j s n ) ,  R respectively, together with the odd generators W, 
(1 s is n ) ,  satisfying the commutation and anticommutation relations: 

[a ; ,  a : ] -  = a;a; - a;.,” 
[a ; ,  W]- = a,”*’ [a ; ,  * I r k ] -  = -a;*, (1b) 

[R, * I r k ] -  = -Vk ER, Vkl- = * I r k  (IC) 
[ * I r k ,  V’I+ = [ * I r k ,  *,I+ = 0 

[a;,  RI- = 0 ( l a )  

[ * I r k ,  Y,]+ = a:R+ a: ( I d )  
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where [ , 1- ([ , I+)  denotes the commutator (anticommutator): these two cases are 
taken into account below by the graded bracket, denoted [ , I .  We note that ( l a )  
expresses the usual gl(n)@gl( 1) commutation relations whilst (16) expresses the fact 
that the operators qi (qi) transform as a vector (contragradient vector) operator of 

A basis for a Cartan subalgebra of gl(n1l) consists of the commuting operators 
a:(  1 s i s  n )  and a, whose eigenvalues serve to label the weights of the representations. 
We denote the weights A of gl(nl1) by (notation as in Kac (1978)) 

gun) .  

A = + wS1 = ( A l ,  . . . , An I w )  
i = l  

so that, with this convention, the root system of gl(nl1) is given by the set of even 
roots * ( E ~  - E ~ )  (1 6 i < j  S n )  together with the set of odd roots * ( E ,  - 6,)  (1 S i S n). 
Following Kac (1978) we choose, as a system of simple roots, the distinguished set 

a, = E ,  - & , + I  l s i < n  a, = E n  - a,  
so that the sets of even and odd positive roots are given respectively by 

a): = { E ~  s i < j ~  n} a):={&i-al[l  S is n)  

and we set 
" n 

po=+ ( E , - & , ) = +  C ( n + 1 - 2 i ) ~ ,  
I <J 1 = l  

n n 

P I = +  (&,-a,)=;  c E , - + n 6 ,  
, = 1  ,=  1 

P = Po - PI . 
We note that gl( nJ 1) admits a non-degenerate even invariant bilinear supertrace 

form arising from the fundamental vector representation T :  

( X , Y )  = s t r ( . r r (x )dy) )  x, Y E gl(nI1) 
leading to 

( E , ,  E , )  = a,, ( E , ,  81) = 0 ( & , a , )  = -1. 

This in turn induces a non-degenerate bilinear form on the weights, given by 

with A as in (2) and A ' =  (A! ,  . . . , Aklu'). 

multiples) weight vector U ' of weight A satisfying the conditions 
Every finite-dimensional irreducible gl( n i l )  module admits a unique (up to scalar 

a ; u ' = O  1 S i < j s  n ~ ' u ' = O  1 C i C n .  (4) 

Such a vector is called a highest-weight vector and its weight A, called the highest 
weight of the representation, uniquely characterises the representation (Kac 1978): 
throughout we denote the irreducible gl(nl1) module with highest weight A by V(A).  
The components of the highest weight A necessarily satisfy the conditions 

A, - AJ E B' l S i < j s n  ( 5 )  
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with o an arbitrary constant, which are just the conditions that A constitute a dominant 
integral weight of the Lie algebra gl(n)Ogl( 1): throughout we denote the finite- 
dimensional irreducible module over gl(n)Ogl( 1) with highest weight A by Vo(A). We 
denote the set of all weights A, whose components satisfy ( 5 ) ,  by D+ (the set of 
dominant integral weights). 

Corresponding to every A E  D' we may construct an indecomposable finite- 
dimensional gl( n i l )  module with highest weight A using the induced module construc- 
tion of Kac (1978). To this end we find it convenient for the moment to denote the 
Lie superalgebra g l (n / l )  simply by L and to let Lo denote the Lie subalgebra gl(n)O 
gl( 1). We let L+ ( L - )  denote the graded-Abelian subalgebra spanned by the operators 
9' (qt) giving the consistent E-gradation 

L=L-OL,OL+.  ( 6 )  

We denote the universal enveloping algebras of L, Lo, L, by U, U,, U ,  and we denote 
by fl* the universal enveloping algebra of the subalgebra 

L,= L,OL,. (7) 

We note that the algebras U ,  are 2"-dimensional with basis consisting of 1 E C together 
with all basis monomials 

9'19'2. . . 9"k(resp P 8 , Y I 2 . .  . 9,k) 1 s i l  <. . .< ik s n, 1 s k s  n. 

From the Poincare-Birkhoff-Witt theorem (Scheunert 1979) we may write, in view of 
(6) and (7): 

U =  u-uou+= U+UOU~ 

= u-u+= U+&. (8) 

Given a finite-dimensional irreducible Lo-module Vo(A), we turn Vo(A) into a fl+ 
module by defining 

L+ Vo(A) = (0). (9) 

The induced L-module P ( A )  is then defined by (Kac 1978) 

V(A) = U-@ 0, Vo(A) = 8 ' P I , .  . . @ Vo(A) (10) 
lsi l< < i 1 4 n  

which constitutes an indecomposable L-module with highest weight A and dimension 
dim P(A)  = 2" dim Vo(A). In a similar way we may define 

L- Vo(A) = (0) (11) 

which leads to the induced L-module 

v-(A)  = U+Oo_ Vo(A). 

This is also indecomposable, but in this case is cyclically generated by a lowest-weight 
vector of weight A - ,  where A- is the lowest weight of Vo(A): recall that A - =  
(A,,, A n - l , .  . . , A l l w ) .  We have the following result. 

Theorem 1 ( K a c  1978). Q(A) = V(A) (i.e. Q(A) is irreducible) if and only if 
( A + p ,  a)#O, for all a€@;. 
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A weight A E D' satisfying the conditions of theorem 1, and the corresponding module 
V(A),  are said to be typical. Similarly, A and V ( R )  are called atypical if ( A + p ,  a) = O  
for some a E 0;. We note that this atypicality condition is equivalent to the condition 
that A I  + o = i - n for a corresponding value of i ,  1 s is n ;  it follows from ( 5 )  that for 
A E D+ this condition holds for, at most, one such value. (We say that the irreducible 
representations of gl(nl1) are at most singly atypical.) The structure of typical irreduc- 
ible L-modules follows immediately from the induced module construction (10). In 
particular the gl( nll)&gl( n ) O g l (  1) branching rules for typical representations may be 
determined by exploiting the fact that the operators 

. . . * j h  1 Si, < i 2 . .  .<  ik G n (13) 

form basis vectors of the antisymmetric contragredient kth rank tensor representation 
of gl(n)Ogl( l ) ,  which follows directly from the anticommutation relations ( Id ) :  the 
operators (13) form a basis for the irreducible gl(n)Ogl( l )  module with highest weight 
(0 ,  - l k l k ) .  We have, from well known tensor product rules (see, for example, Gould 
1989b) 

v o ( 6 , - i k l k ) @ V o ( A ) =  0' vo ( '~ - (E1 , -6 , ) -  . . . - (  E l h - 6 i ) )  
I = , , <  < d k s n  

where the decomposition on the R H S  is multiplicity free and the sum is over all ascending 
sequences of k integers 1 S i ,  < . . . < ik G n (corresponding to the weights in 
V,(0, - l k l k ) ) ,  subject to the condition that 

k 

A - (&,, - 6,)  E D'. 
, = I  

By this means we arrive at the following branching rule for the decomposition of a 
Kac module v(A) into irreducible g l (n )Ogl (  1) modules: 

RA) =@V,(1Z,) 
t 0  

where the sum is over all g1( n) 0 gl( 1 ) highest weights A, = (A,, , . . . , A,,, 1 w,) whose 
components satisfy the conditions 

and have ( A l  - A,, ) integral, 1 s i s n. 
In the case that V(A) is a typical gl(n(1) module, and so equal to V(A),  the 

gl(nl l )&gl(n)Ogl( l )  branching rules follow immediately from (14). In the case that 
V(A) is atypical, however, the situation is more complex, since in such a case the Kac 
module v ( A )  is no longer irreducible and V(A) only appears as a subquotient of V(A): 

V(A) = V ( A ) / M ( A )  

where M(A) is the (unique) maximal submodule of V(A).  However, for arbitrary 
A E D+, we may employ the result (Gould 1989a) that the lowest-weight Kac module 
(cf (11) and ( 1 2 ) )  

( 1 5 )  v-( '4 - 2p 1 ) = U+ @ 0- v,( i\ - 2 p  ,) L-  Vo(A-2pl) = (0) 
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contains, as a unique irreducible L-submodule, 

where 

@ = *9* * . . Y*. 
We note, since ( p , ,  a) = 0 for (Y E @:, that A E D' if and only if A -2p, E D+. 

It is our aim in the following to employ the modified induced module construction 
of (16) in order to determine the gl( nll)lgl( n)Ogl(  1) branching rules for all irreducible 
gl( n l l )  modules V(A), A E D+. We expect, in the case of atypical A E D+, a modification 
to the brandhing rule (14), with the deletion of certain gl(n)$gl(l) highest weights 
that satisfy the 'lexicality' conditions given there. 

3. Antisymmetric tensors 

We introduce the alternating symbol E ~ ~ . . .  which is completely antisymmetric in its 
n subscripts, and which has the value 1 when p = 1, q = 2, .  . . , U = n. Then we can 
write the operator q of (17) in the form 

9 = ( 1 / n ! ) ~ ~ ~ . . . , . \ y p V . .  .q" (17') 

(summation convention over repeated indices here and below). 

subscripts, and defined for each k = 0, 1, 2, .  . . , n as (cf Gould 1988a) 
It is convenient to generalise by introducing also qpqr...s, antisymmetric in its k 

- 
/(n-k)!l~pqr . . . s r u . . . ~ * ' ~ I I U ~ ~ ~  9'. (18) k ( k - 1 ) / 2  

*pqr,..s = [(-I)  

*"Qpq r . . . s  = (-1) q p q r , , , s q m  

These operators satisfy 
n - k  - 

(19a) k-1 m -  = S p m ~ q q r . . . s - S q m ~ p r . . . s + .  * *+(-1)  Ss qpqr,,, 

We note that qpqr is a kth rank, contragredient, antisymmetric, pseudotensor 
operator with respect to g1( n)Ogl( 1): the commutation relations with the generators 
are found by repeated application of (1) to be 

(20a) [a;, q p q r  s I  = 8 ; q p q r  s - Sbqjqr 5 - * a ' - Sgqpqr j 

[a, qpqr S I  = (k  - "Ppqr C. (20b) 
To appreciate the significance of the tensors (18) we note, in view of the modified 

induced module construction (16), that the irreducible L-module V(A) is spanned by 
the vectors 

* . * J * @ U )  1 G i, < i,<. . .< ik s n V E  Vo(A-2p1) 

*lvo(A-2pl)=~o) l s i s n .  (21) 

where, by definition, we have 
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In view of the above, we deduce immediately that for D E  Vo(A-2p,) 

YllY12. * . % h ( 9 0 u ) = Y ! l . .  . Y i A ~ , [ Y I h , 9 ] O U  

[Yl,@]=@,Occ.: (22) 

where we necessarily have 

for suitable coefficients C:, which must belong to the enveloping algebra of g1( n)Ogl(  1). 
To determine these coefficients we multiply on the left by Y’ from which we obtain, 
in view of (19), 

90 c f  = Yl[Y, ,  91 
= - { [Y1 ,  Yf@] -[Y,, @I@} 
= ( s :R+aa ; )9=*O(a+R-n+  1); 

where in the second equation we used the result W@ =@9’ = O  as in (19). By this 
means we deduce that 

C : =  ( a + R - n +  I ) :=  a ; + ~ l ( ~ - n +  1) 

and substituting into (22) we arrive at 

[ Y @ ] = @, o ( a + R - n + 1 ).I. (23) 

In a similar way we deduce the result 

[TI, 9 , ] = @ , k @ c F  (24) 

for suitable coefficients CF belonging to the enveloping algebra of gl(n)Ogl( l ) .  In 
this case we multiply (24) on the left by F q  to give, using (19a) 

2@k 8 c;k = Y q [ q , ,  @,I 
= -{[Y1, v@,] -[Y,, VI@,} 
= ( a  +a):@, - S y P f ,  @] 

where we have employed the antisymmetry of the coefficients C. Using (21) and the 
commutation relations (20) we then obtain 

29k @ CZk = -6;@k@(a - n + 2):+@, @ ( a  - n +2)p. 

Comparing coefficients of @ k  we thereby obtain 

2 c ;k = 8,” ( a + R - n + 2) - a + R - n + 2) F. 
We thus finally arrive at 

[Yj, @ j ]  c$k 
= O ( a  + - n + 2) 7. 

By a simple induction argument we obtain, using (19a) and the commutation 
relations of (20), the general result: 
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We note, from the commutation relations (20), that the result (26) may be expressed 
in terms of the gl(n) adjoint matrix (Green 1971, Gould 1980) 

# = -a{ (27) 

according to 

[ql, q,l = (R + n - 1 - k - fi),'ql,l , A .  (28) 

It follows, by repeated application of the above results, that the irreducible L-module 
(16) is spanned by vectors (summation over repeated indices assumed) 

qIAqlA ~ . . . qll(@@ U )  = p , h  . . . T,:qIl @ ( a  + 0 - n + 1 ){;U 

( a  + R  - n +2):;(a + R  - n + 1 ) : ; ~  

qlkqth-, . . . q , l ( ~ ~ U ) = ( ~ + ~ - k - ~ ) , A ' h . .  . (R+n- l - c i ) , ; lq ,h  ,,@U. 

=@,, , ,@(a+n+k-n) : ;  . . .  

(29a) 

for U E Vo(A - 2pl).  Alternatively, in terms of the g1( n)  adjoint matrix (25) we may write 

(296) 

The results (29) yield a great deal of information on the structure of the spaces 
V(A).  As noted previously, the vectors qt, ,i constitute the basis vectors of the 
antisymmetric contragredient tensor representation (0 ,  - l k l k )  of gl( n )Ogl (  1). In this 
case not all irreducible representations in the tensor product 

vo(o, - i , l k ) @  v 0 ( ~ - 2 p , )  

will occur in V(A), due to the special nature of (29) which in fact imply certain 
vanishings (related to atypicality). This point is best illustrated in terms of tensor 
operator shift components, which will be discussed in D 4. 

['Plh,[T,k-l ,..., [ V , l , q ]  . . . I ]=* ' , ,  , , @ ( a + Q + k - n ) ?  . . .  ( a + R + l - n ) { ; .  

In particular, it follows from (18) that we may write 

We conclude this section by noting that (29) may be expressed as 

(30) 

1 = qnn-,  = (-1)hn(n-l) * I 2  - n = Sn(d*.,(,) T ( l i  

where T is any permutation of the numbers 1 , .  . . , n. Equation (30) then implies that 

A ' = [ P n ,  . . , [ql, q ] .  . . I]  
= C s n ( r ) ( a  +n):'"'(a +a- l):L'-'). . . ( a  + R +  1 - n);") (31) 

T 

where the sum is over all permutations of the numbers 1 , .  , . , n. If we set 

VT = 9nqn-l . . .VI  

then we may write (cf Gould (1989a), where the operator VI was denoted T- )  

WF = A'+  cp (PE U L -  

with A' as in (31). Following Gould (1989a), we see that A' necessarily belongs to the 
centre of the enveloping algebra of gl(n)Ogl( l ) ,  and its eigenvalue on the irreducible 
g l (n)Ogl( l )  module V0(A-2pl) is given by 

which follows directly from the results of 9 4. 
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4. Shift  tensors and branching rules 

Following Bracken and Green (1971) and Green (1971), the gl(n)Ogl( 1) contragredient 
vector operator Y i  may be resolved into g l (n)Ogl( l )  shift components 

= Y [ r ] ,  
r =  I 

where Y[r l1  is a contragredient vector operator that decreases the highest weight of a 
representation of g1( n), in a given irreducible representation of gl( nl l ) ,  by the weight 
E,, whilst increasing the gl(1) weight w by 1 unit: 

*[ r1,v E Vo(Ao - E r  + 8, ) vo(Ao). 

The above shift components may be constructed using 

Y [ r I i = P [ r ] i ' Y , = Y J P [ r ] :  

where P[ r ] ,  P[ r ]  denote the polynomials in the matrices 6, U respectively, defined by 

Here the roots a, and adjoint roots 5,  are gl(n)invariants which take constant values 
on an irreducible gl( n) module with highest weight (Ao1 , . . . , A0,J given by 

a, = Ao, + n - r G r  = r - 1 - A o , .  (32) 

We note that the roots a,  ( C r )  are all distinct, on a given (finite-dimensional) irreducible 
gl(n) module, and the following identities hold (Green 1971): 

~ : P [ r l , ~  = P[r]:6: = c ~ , P [ r ] , ~  

u : P [ r ] i  = P[r ] ;a :  = a,P[r]L.  

More generally a product of two odd operators: 

(33) 

= -YJYl 

is to determine an antisymmetric contragredient tensor operator of rank 2, with the 
following resolution into shift components: 

where 

* L r 9  ' 1 1 ,  = * ~ r l l Y [ ~ l J  + Y [ f l f Y [ r l ,  
which effect the following shifts on the gl(n)Ogl( 1) representation labels: 

* [ r ,  IIUu E v o [ A o - ( ~ ,  -81 ) - (&/ -81)1  VdAo). 

Still more generally, the antisymmetric kth-rank contragredient tensor Y , , Y I 2 . .  . YIA 
may be resolved into shift components 

Y,, . '  .YIA = c W r I Y  r z , . ' .  9 r k l f , 1 2 .  f A  
1 G r l < r 2  < q = Z n  
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In discussing shift components of antisymmetric kth-rank contragredient tensors, 
it is convenient to introduce the antisymmetric tensor matrix 

Thus, for example, for the case k = 2 we have 

a,", = f( 8;s: - $;a;) 
ak"r=t(S;a:+s:a;-SJka;-6;aJk) 

n): 
etc. Then we may construct the appropriate tensor projections in terms of the tensor 
matrix a, as follows ( 1  s r I  < rz <. . . < rk 

(37) 1 p [ r l , r 2 , . . . , r k l =  ls/l<!>< 0 < / h s n  a r l ,  , r h - a / l ,  , / A  

a - a11,/2* 9 / h  

where the product is over all ascending sequences of k numbers 1 s 1, < 1 2 . .  . < lk 6 n, 
except for ( I , ,  1 2 , .  . . , 1 , )  = ( r l ,  r 2 , .  . . , r k ) ,  and the characteristic tensor roots are given 
by (Green 1971) 

a/ ,  ,/? 

with a, as in (32). 

rank contragredient tensor, then its shift components are given by 

= a/,  + a/> +. . . + cylh + f k (  k + 1 -2n)  

In terms of the tensor matrices (37), if is an arbitrary antisymmetric kth 

9Il ' (=  c q [ r l  9 r 2 , .  ' . 9 r k l ~ ,  ih 

9 [ r l  9 r 2 ,  * . . 3 r k l i l  

1 r r 1 c r 2 <  < T A = "  

(38)  L A  = ~ J ~ J Z  J ~ P [ ~ I  5 r 2 , .  . 9 r k ] < : { :  Jh I h .  

In this notation (34) may be expressed as 

W r l ,  r 2 , .  . . , r k l t , , 2  li = W r I : r Z , . .  . , r k l , ,  , h + W r 2 : r l ,  r 3 , .  . ., r k l l l  l h + .  . . 
+ q [ r k  r l ,  r 2 ,  . . 9 r k - 1 1 1 ~  (39) 
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where the 'primary' shift components on the RHS are given by 

qLrI: r 2 1  * 9 r k l ~ ,  i A  = * [ r i ] 1 , q [ r 2 , .  * .  9 r k l i z  t h  

= p [ r l I l 1 1 q , q 1 2 . .  . q J A P [ r 2 , .  . . , rkI{; ::. 
Equation (39) in fact extends to arbitrary antisymmetric contragredient kth-rank 
tensors, whose primary shift components are given, in general, by 

W r I  : r 2 , .  . . 9 T k l , ,  IA = ~ [ r l l : l q , , 2  ,hP[r* ,..., rkl:; ::. (40) 

The shift components (38) and primary shift components (40) effect shifts on the 
g1( n)Ogl(  1) representation labels, given by (32). 

The above shift component analysis is ideally suited to investigate the nature of 
the irreducible gl( n i l )  modules V(A), using the modified induced module construction 
of ( 1 6 ) ,  to which we now turn. 

We have, using ( 2 2 )  and ( 3 1 ) ,  for U E  V0(A-2pl) ,  

q[ r ] , 4  o U = qlq o P[ r ] : v  

= qk 0 ( U  + R  - n + 1 ) f ~ [ r ] : u  

= 9 [ r I k ( c u ,  + R  - n + 1)u. 

We note that the factor a ,  + R - n + 1 is given by 

A + n - r + w ' - n + 1 

where Ai, w' refer to the components of A' = '1 - 2 p , .  We thus have, in terms of the 
highest-weight labels A = ( A , ,  . . , , ,!,,/U), 

w ' = w + n  A: = A, - 1 

from which we obtain 

q [ r ] , q O  U = ( A + p ,  E ,  - 6 , ) q [ r ] l ~  

= ( A +  p, E ,  - S,)q,O P[ r ] :u  

where we have used the result: 

( A i p ,  E ,  - 6 , )  = A , + w  + n - r. 

The above shows immediately that the irreducible gl(n)Ogl( 1) module 

V,(A - E ,  + SI) 

only occurs in V(A) provided ( A +  p, E ,  - 8,) # 0. 
Proceeding inductively suppose, for 1 s r ,  < rz < . . . < rk S n, that the action of the 

shift components of the antisymmetric contragredient tensor 9,1P12.  . . P,h is given by 

k 

W r i ,  r 2 , .  . . rkl, ,  ,,@@U= n ( A + + ,  E ~ ,  -S l )q , l  I A O P [ r l , .  . . , rk]::  ::U. (41) 
1 = I  

Multiplying on the left by * [ r ] ,  we obtain 

9 [ r l , q [ r l , .  . ., rkl, ,  , h * . T I o ~ =  n ( A + p ,  ~ , , - 8 ~ ) ~ [ r 1 , ' 9 , ~ , ,  , A O P [ r  ,,.. . , 
k 

::U. 
1 = I  
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Using (28) we obtain, in terms of the primary shift components of (38), for the RHS 
above: 

k n ( A + p , ~ , , - 8 , ) ( R + n - 1 - k - G , ) @ [ r : r ,  , . . . ,  r k l l l ,  
i = 1  

where we have employed (33). In this case (cf (32)) 

R +  n - 1 - k -  G r  = U ’ +  n - 1 - k - ( r -  1 -A;)  

where A:, o‘ now refer to the gl(n)Ogl( l )  components of the shifted weight: 
k 

A ’ = A - ( E ~ - ~ ~ ) -  C ( ~ ~ , - 8 l ) .  
I = 1  

Thus we obtain, in terms of highest-weight labels, 

R +  n - 1 - k - G r  = A , + w  + n - r = ( A + p ,  E ,  - 8,) 
giving 

q [ r l i q [ r l ~  * .  . 3 rkklr,  , , q @ v  
k 

= ( A +  P, E r  - 81) n ( A  + p, E,, - 81)’Rr : r ~ ,  . . . , r k l l l ,  U. 
, = I  

Finally, by symmetrising the shift labels using (39), we obtain the following pure shift 
antisymmetric tensor equation: 

r l  3 . . . 9 r k l u ,  ti+@ U 

k 

= ( A + p ,  ~ , - 8 i )  n ( A + p ,  E r , - 8 1 ) q [ r ,  r l , . .  . , r k ] , , ,  

Thus, by induction, we have established (41) for all values of k, 1 =s k s n. 

of V(A) with highest weight 

l i ~ .  
, = I  

The vectors on the LHS of (41) either span the irreducible gl(n)Ogl( l )  submodule 

i = I  

or else are all zero for every U E Vo(A -2pl)  and choice of indices 1 S i l  , i z ,  . . . , ik S n. 
In view of (41), the latter case only occurs if the weight (42) is not dominant or if 
( A + p ,  E ~ ,  -8,)  = O  for some i ( s k ) .  Moreover, in view of the fact that A E  D+, it is 
easily seen that ( A +  p, a) can be zero for at most one odd positive root a = E ,  - 81 (i.e. 
the atypical irreducible representations of gl( n l l )  are all singly atypical, as noted 
before): in such a case we refer to the index i as the A-atypical index (the remaining 
indices are referred to as A-typical). This suggests that we introduce the set of A-typical 
odd positive roots 

@:(A) ={a E @:l(A+p, a) # 0). 

In view of the above remarks we have @;(A) =@: for A E D’ typical, whilst for A 
atypical l@T(A)l= /@:I- 1. We now let P (A) denote the power set of @:(A) (i.e. P (A)  
is the set of subsets of @:(A)) and for any subset 0 E @:(A) we write 

with pl(0) = 0 (0 the empty set). With this convention we have the following result. 
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Theorem 2. The finite-dimensional irreducible gl(nl1) module V(A)  is the direct sum 
of all finite-dimensional irreducible gl( n ) 0 g1( 1) modules with highest weights 

Ao= A - 2 p l (  0 )  e €  P ( A )  

subject to A o e  D', each occurring with multiplicity 1. 

Another way of phrasing the above result is to note that the gl(n)$gl(l)  highest 
weights A. = (An, ,  . . . , Ao,,Iwo) occurring in V(A) are to satisfy 

n 

w o = w +  c (A, -Ao , )  
r = l  

if A , + w  # i - n  (44) 

if A, + w = i - n. 

1 A ,  3 Ro, 3 A ,  - 1 

-10, 3 Ao,,, l < i < n - l  

I < i < n  

An, = A ,  

In addition, every A ,  - Ao, must be integral. Each allowed Vo(Ao) occurs in V ( h )  with 
unit multiplicity. In the case that A is typical, this branching rule obviously reduces 
to that given by (14) as required. These rules are consistent with those implicit in the 
results of Palev (1987, 1988a, b). 

We conclude this section with some comments on the weight spectrum of V(A). 
We note that the gl(n)$gl(l)  highest weights occurring in V(A) are obtained from A 
by decreasing the components A, by at most one unit when i is A-typical, i.e. A, + w # 
i - n. However, even if the index i is A-typical we cannot decrease A, if there exists 
a A-atypical i n d e x j  > i with AI = A ,  (i.e. (A, E ,  - E ] )  = 0). (This eventuality is automati- 
cally taken into account in theorem 2 by requiring the highest weights A. to be dominant 
integral). This leads us to consider the modified set of odd positive roots: 

&:(A) = {a E @:(h)lP E 0; with C Y - ~ E @ ' ~ +  

and 

( A , c Y - P ) = O J ~ E @ T ( A ) }  

whose power set, denoted &A),  may replace P ( A )  in theorem 2 :  we have the corre- 
sponding index set 

I ,  = (1  < is n l ( ~ ,  - 6,) E ~ : ( A ) } .  

P I ( A )  = P I ( ~ ; ( A ) ) .  

Finally we set (notation as in (43)) 

Then it is easily seen that A - 2p,(A) E D+ and hence, by theorem 2, the irreducible 
g l (n)Ogl(  1) module with highest weight 

A - 2 ~ i ( A )  
necessarily occurs in V(A) ,  and is characterised by the fact that it is minimal among 
the set of g l (n)Ogl( l )  highest weights in V(A). 

A ' - )  = ~(11- 2pl(A))  

It follows that the minimal weight of V(A) is given by 

where T is the unique Weyl group element sending positive roots to negative roots 
(Humphreys 1972). We thus arrive at the following result. 
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Lemma (notation as aboue). Let V(A)  be a finite-dimensional irreducible gl( nil)  
module with highest weight A E  D'. Then 

(i) the minimal weight of V(A) is 

A - ) = A - -  C ( ~ , , + I - , - a l )  
, € I \  

where A- is the minimal weight of the gl(n)Ogl( l )  module V,(A), and 
(ii) for every weight v in V(A) s.t. v # A, A' - ) ,  we have 

A >  v > A ' - ' .  

Remark. The ordering > referred to above is the natural ordering induced on the 
weights by the (distinguished) system of simple roots: we write A > p  if and only if 
A # I.L and 

n - l  

A - p =  n , ( E , - - , + l ) + n y @  
I = I  

with n,, n, E Z+. We note also that the weight spectrum of V(A)  is stable under the 
action of the Weyl group of gl(n)Ogl( l ) .  

5. Character formula for gl(n1l) 

As an application of our results, we present a confirmation for gl(nl1) of the character 
formula proposed by Hughes and King (1987). 

To write the branching rule of the previous section in a convenient form for our 
present purposes, we introduce the index set 

f ,  = { i  E I , I ( A ,  E, - 

i - m , E  I ,  

I , =  U { i , i - l ,  . . . ,  i - m , }  

# 01. 

(.\, E, - E,-m,) = 0. 

For each i E f, we let m, be the largest non-negative integer such that 

With this notation the index set I ,  of Q 4 is given by 

I € / \  

and the gl(nll)Jgl(n)Ogl(l)  branching rule may be written 

V( A)  = 0 ' Vo( Ao) 

where the g l (n )Ogl ( l )  representation labels A. are of the form 
(45) 

A o = A -  n , [ E , + & ,  _ 1 + . . . + ~ , - k , - ( k , + 1 ) 6 , ]  (46) 
, e l ,  

and the sum in (46) is over all sets of integers n, = 0, 1 and Os k, 6 m, ( i  E f,). It 
follows that the number of irreducible g l (n )Ogl (  1) modules occurring in the decompo- 
sition (45) is given by the integer 

2"\' n ( m ,  + 1). 
I € / ,  

Now let W be the Weyl group of gl( n). Applying the usual gl( n )  character formula 
(Humphreys 1972) we obtain the following formula for the character of V(A):  

q ch V(A)  = sn ~ ~ ' e x p [ c + ( A ~ + p ~ ) l  
OEW 1" 
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where the sum over A. is over all gl( n)Ogl (  1) highest weights occurring in V ( h )  and 
q denotes the usual Weyl denominator function: 

q = n + (ea12 -e-"/' 1. 
" € @ , I  

Using the fact that a ( p I )  = p ,  for all (+E W, together with (46), we see that the above 
character formula reduces to 

q ch V(A)  = epl 2 sn a e"' ' + p '  n 67 
U €  w i, 

(47) 

where 

e: = 1 + exp[ -a( E ,  - a,)]  + exp[ -a( E ,  + E , -  I - 2sI )] + . . . + exp 

(48) 

To simplify (47) we write 

q ch V(A) = e"! c sn U e""+"' epdp 
U E W  

where 

e':= e; .  
k c i ,  
k # i  

Now for each index j s.t. i - m, G j  < i consider the reflection U, E W determined by 
the root E, - E , + ~ :  

a, ( A  ) = A - (A,  E, - E,+ I 1 ( E, - E, + 1 ). 

Then we have 

1 sn a e x p [ a ( A + p ) ]  exp[-a(E,-61)]&' 
U € W  

= sn(aa,) exp[c+a,(A+p)] exp[-aa,(E, - S , ) ] e ' 7 1  

= - c sn U exp[a(A+p)]  exp[-a(E, - E , + ~ ) ]  exp[-a(&,+, -6,)le'Y 

= -  C sn a e x p [ a ( h + p ) l e x p [ - a ( ~ , - ~ , ) l e ' ~ = ~  

U €  w 

r 7 € &  

U €  w 

where, in the above, we used the fact that $'l = e'; together with 

a, ( A  + P )  = A + P - ( E ,  - E,+ 1 ) 

which follows from the relations 

(A ,  E , - E J + I ) = O  ( P ,  E, - E / + , )  = ( P o ,  E, - & / + I )  = 1. 

It follows that the term exp[-a(&, -SI ) ]  occurring in (48) may be replaced by the 
symmetrised sum 
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since the remaining terms contribute zero to the Weyl group sum. Similarly, if j ,  k are 
two indices such that i - m, s j < k < i, or k = i and j < i - 1, then by applying the Weyl 
group reflections U], (Tk we deduce 

sn U exp[ u ( A  + p)]  exp[-u(E, + Ek - ~ s , ) I @  = 0. 
U 

We may thus replace the term exp[-a(E, -26,)] occurring in (48) with the sum 

C e x p [ - c r ( ~ , + ~ ~ - 2 6 , ) ] .  
r - m , ~ j < k ~ i  

Proceeding in this way we deduce that, in (47), 0: may be replaced with the symmetrised 
expression 

e: = 1 + exp[-u(EJ - s,)] + exp[-u(EJ + .zk -26,)] + . . . 
I - m ,  S J S  I I - m ,  S J  < k <  I 

8-m, SJ s I 

t-m, 

= n { 1 + e x p [ - u ( ~ ~ - 8 ~ ) ] } .  
] = I  

We thus arrive at the character formula: 

q ch V(A) =ep! C sn (T exp[u(A+p)]  n 'E' (1 +exp[-u(~ ,  - SI)]} 
U €  w l e i ,  I = '  

which, in terms of the index set I ,  of 9 4, simplifies to 

q c h  V(A)=ePl s n u e x p [ a ( A + p ) ]  n {l+exp[-a(s , -8 , ) ]}  
U €  w l € I ,  

= epi sn a exp[ a ( A  + p)]  fl { 1 + exp[ -a( e)]}. 
m e & , ; (  2 )  Lr€ w 

This is the character formula conjectured by Hughes and King (1987). It differs 
from the formula proposed by Bernstein and Leites (1980) for gl(n1m) (and later 
restricted to gl(nl1) (Leites 1987)) and by Vander Jeugt (1987) for singly atypical 
representations of s l (n(m),  which here would have &:(A) replaced by @:(A). It is 
possible that the two formulae are equivalent for gl(nll), but this remains to be proved. 

6. Discussion 

The structure and characters of all irreducible finite-dimensional gl( nll)  modules have 
been determined. From the branching rule of theorem 2, we could explicitly construct 
an (orthonormal) super Gel'fand-Tsetlin basis for the irreducible modules, which is 
symmetry adapted to the subalgebra chain 

g l ( n l l ) ~ g I ( n ) ~ g l ( n - l ) = .  'gl(1).  

I t  is of great interest to know the matrix elements of the gl(nl1) generators in such a 
basis, and to characterise the star and grade-star representations (Scheunert er a1 1977) 
of this superalgebra. The former problem has already been investigated, for both 
typical and atypical cases, by Palev (1987, 1988a, b). 
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It would also be of interest to extend the approach of this paper to gl(n)m) (at 
least for determining the gl(n)Ogl(m) content and hence characters of the irreducible 
representations). There is evidence to suggest that our approach will extend to this 
case, in the framework of antisymmetric tensors of gl(n)Ogl(m), since the induced 
module construction of (16) still applies (Gould 1988a) as it does for the Lie super- 
algebras C ( n ) .  In  the case of type-I1 simple Lie superalgebras the situation is more 
complex because the construction of (16) no longer applies, so that a suitable generalisa- 
tion would be required. 
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